首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5637篇
  免费   1169篇
  国内免费   935篇
测绘学   697篇
大气科学   875篇
地球物理   1958篇
地质学   1846篇
海洋学   968篇
天文学   230篇
综合类   388篇
自然地理   779篇
  2024年   12篇
  2023年   55篇
  2022年   127篇
  2021年   186篇
  2020年   173篇
  2019年   212篇
  2018年   168篇
  2017年   235篇
  2016年   238篇
  2015年   273篇
  2014年   295篇
  2013年   448篇
  2012年   340篇
  2011年   315篇
  2010年   291篇
  2009年   320篇
  2008年   354篇
  2007年   465篇
  2006年   404篇
  2005年   315篇
  2004年   298篇
  2003年   262篇
  2002年   218篇
  2001年   202篇
  2000年   171篇
  1999年   205篇
  1998年   159篇
  1997年   143篇
  1996年   145篇
  1995年   109篇
  1994年   127篇
  1993年   94篇
  1992年   87篇
  1991年   77篇
  1990年   47篇
  1989年   41篇
  1988年   37篇
  1987年   27篇
  1986年   7篇
  1985年   14篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   10篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
  1954年   2篇
排序方式: 共有7741条查询结果,搜索用时 15 毫秒
101.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
102.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   
103.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
104.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   
105.
Mountain snowpacks provide most of the annual discharge of western US rivers, but the future of water resources in the western USA is tenuous, as climatic changes have resulted in earlier spring melts that have exacerbated summer droughts. Compounding changes to the physical environment are biotic disturbances including that of the mountain pine beetle (MPB), which has decimated millions of acres of western North American forests. At the watershed scale, MPB disturbance increases the peak hydrograph, and at the stand scale, the ‘grey’ phase of MPB canopy disturbance decreases canopy snow interception, increases snow albedo, increases net shortwave radiation, and decreases net longwave radiation versus the ‘red’ phase. Fewer studies have been conducted on the red phase of MPB disturbance and in the mixed coniferous stands that may follow MPB‐damaged forests. We measured the energy balance of four snowpacks representing different stages of MPB damage, management, and recovery: a lodgepole pine stand, an MPB‐infested stand in the red phase, a mixed coniferous stand (representing one successional trajectory), and a clear‐cut (representing reactive management) in the Tenderfoot Creek Experimental Forest in Montana, USA. Net longwave radiation was lower in the MPB‐infested stand despite higher basal area and plant area index of the other forests, suggesting that the desiccated needles serve as a less effective thermal buffer against longwave radiative losses. Eddy covariance observations of sensible and latent heat flux indicate that they are of similar but opposite magnitude, on the order of 20 MJ m?2 during the melt period. Further analyses reveal that net turbulent energy fluxes were near zero because of the temperature and atmospheric vapour pressure encountered during the melt period. Future research should place snow science in the context of forest succession and management and address important uncertainties regarding the timing and magnitude of needlefall events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
106.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   
107.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
108.
Large‐scale engineering computing using the discontinuous deformation analysis (DDA) method is time‐consuming, which hinders the application of the DDA method. The simulation result of a typical numerical example indicates that the linear equation solver is a key factor that affects the efficiency of the DDA method. In this paper, highly efficient algorithms for solving linear equations are investigated, and two modifications of the DDA programme are presented. The first modification is a linear equation solver with high efficiency. The block Jacobi (BJ) iterative method and the block conjugate gradient with Jacobi pre‐processing (Jacobi‐PCG) iterative method are introduced, and the key operations are detailed, including the matrix‐vector product and the diagonal matrix inversion. Another modification consists of a parallel linear equation solver, which is separately constructed based on the multi‐thread and CPU‐GPU heterogeneous platforms with OpenMP and CUDA, respectively. The simulation results from several numerical examples using the modified DDA programme demonstrate that the Jacobi‐PCG is a better iterative method for large‐scale engineering computing and that adoptive parallel strategies can greatly enhance computational efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
109.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
110.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号